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SYMBOLS 

A reference area, maximum body cross-sectional area 

CD 

CL 
b 

drag drag coefficient, - 
qmA 
lift lift coefficient, - 
qmA 

body-fixed lift force due to small model asymmetries at x = 0 
Ld 

C 

C Lr 
resultant lift force due to small model asymmetries, J(cLd)2 ' 

lift-curve slope La 

Cm 
moment pitching-moment coefficient, 
qmAd 

pitching-moment-curve slope (based on an assumed linear pitching- 
cm, moment curve) 

acm ~ acm 
a (qd/V) a (Bd/V) c +c danping-in-pitch derivative, 

mq m& 

C 
Pmax 

stagnation-point pressure coefficient 

C body-fixed side force due to small model asymmetries at x = 0 
yd 

d reference diameter, maximum body diameter 

moment of inertia about the roll axis 

moment of inertia about transverse axis through center of gravity 

IX 

IY 

M Mach number 

m mass of model 

angular pitching velocity 

free-stream dynamic pressure 

5 Re Reynolds number based on free-stream air properties and model 
reference diameter, d 
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AERODYNAMICS OF MARS ENTRY PROBE-LANDER 

CONFIGURATIONS AT A MACH NUMBER OF 10 

By Robert I .  Sammonds 

Ames Research Center 

SUMMARY 

An experimental  s tudy t o  determine t h e  aerodynamic c h a r a c t e r i s t i c s  of  
s eve ra l  conf igura t ions  intended f o r  use i n  explor ing t h e  atmosphere of  Mars 
has been conducted i n  f r e e  f l i g h t ,  i n  s t i l l  a i r ,  a t  a nominal Mach number of 
10 and a Reynolds number (based on model diameter) of 300,000. The configura-  
t i o n s  t e s t e d  were t h r e e  s p h e r i c a l l y  b lunted  axisymmetric cones designed t o  
have a zero l i f t - c u r v e  s lope  and cons tan t  drag a t  moderate angles  of a t tack 
and two h ighe r  drag b l u n t  cones with h a l f  angles  of 60" and 55". 

A t  angles  of  a t t a c k  l e s s  than  15",  t h e  drag c o e f f i c i e n t s  of a l l  t h r e e  
"zero l i f t "  models were i n v a r i a n t  with angle  of a t t a c k  and t h e  l i f t - c u r v e  
s lopes  were near  zero.  Each of t hese  conf igura t ions  was s t a t i c a l l y  s t a b l e ,  
with t h e  s t a b i l i t y  decreasing with inc reas ing  angle  of a t t a c k .  The dynamic 
s t a b i l i t y  of  t h e  t h r e e  "zero l i f t "  models v a r i e d  from s t a b l e  t o  uns t ab le  as 
t h e  combination of  cone ha l f -angle  and nose b luntness  r a t i o  was va r i ed  from a 
cone ha l f -angle  o f  44.1" and a nose b luntness  r a t i o  of  0 .33 t o  a cone h a l f -  
angle  of 27" and a b luntness  r a t i o  of 0 .95.  

The drag c o e f f i c i e n t  f o r  t h e  60" high-drag cone was 1.46 o r  about 
4 percent  h igher  than t h a t  obtained f o r  t h e  55" cone. 
and t h e  dynamic s t a b i l i t y  were t h e  same f o r  t h e s e  two high-drag models and 
e s s e n t i a l l y  cons tan t  with angle  of  a t tack.  These two models were s t a t i c a l l y  
and dynamically s t a b l e  i n  t h e  angle-of-at tack range of t hese  t e s t s .  However, 
o f  t h e  f i v e  conf igura t ions  t e s t e d  t h e  s t a t i c  s t a b i l i t y  of  only t h e  60" cone 
increased  with inc reas ing  angle  of  a t t a c k .  

The l i f t - c u r v e  s lope  

The add i t ion  of an af terbody t o  t h e  55" high-drag b lun t  cone d id  not  
appreciably affect  i t s  aerodynamic c h a r a c t e r i s t i c s  i n  t h e  angle-of-at tack 
range of  t hese  tests (0" - 15") .  

. 1  

INTRODUCTION 

The use  of  unmanned probes t o  explore  t h e  atmosphere of  t h e  p l a n e t  Mars 
has  been proposed ( r e f s .  1-4).  The s t r u c t u r e  and mean molecular weight of t h e  
atmosphere can be determined during en t ry  by on-board measurements of p re s su re ,  
temperature,  and a c c e l e r a t i o n  i n  appropr i a t e  phases of t h e  en t ry ,  while  t h e  
atmospheric composition can be determined by measuring t h e  thermal r a d i a t i o n  
of t h e  shock l a y e r  o r  by use of a mass spectrometer .  
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I t  was o r i g i n a l l y  thought t h a t  a b a l l a s t e d  sphere would make an i d e a l  
v e h i c l e  f o r  t h i s  purpose ( r e f .  1) because of  i t s  c h a r a c t e r i s t i c s  of zero l i f t  
and cons tan t  drag. However, tests (ref. 5) have shown it t o  be dynamically 
u n s a t i s f a c t o r y ,  uns t ab le  a t  a l l  Mach numbers from 0 . 4  t o  14.5 and e r r a t i c  i n  
i t s  angular  motions a t  low speeds.  As a s u b s t i t u t e  f o r  t h e  sphere ( intended 
t o  r e t a i n  i t s  b a s i c  advantages) ,  a series of  sphere-cone models were designed 
us ing  Newtonian impact theory  t o  have drag independent of angle  of a t t ack .  

a family of  s p h e r i c a l l y  b l u n t  cones having cons tan t  drag can be der ived  by 

From t h e  .following r e l a t i o n s h i p  from re fe rence  6,  C = C - 2cDo,  
La Pmax 

s e t t i n g  CLa = 0.  

I t  was t h e  purpose of t h i s  i n v e s t i g a t i o n  t o  determine t h e  aerodynamic 
c h a r a c t e r i s t i c s  of t h r e e  such bodies  as wel l  as two h igher  drag bodies  t h a t  
might be s u i t a b l e  e i t h e r  as probes o r  landers .  The e f f e c t s  of angle  of a t t a c k  
on t h e  drag, l i f t - c u r v e  s lope ,  s t a t i c  margin, and t h e  s t a t i c  and dynamic s ta-  
b i l i t y  were determined f o r  each of t h e  candidate  conf igura t ions  a t  a Mach num- 
b e r  near 10. Some e f f e c t s  of a f te rbody shape, Mach number, and Reynolds 
number a r e  noted b r i e f l y  f o r  one of t h e  high-drag conf igura t ions .  

These tests were conducted i n  t h e  Ames Hypervelocity Free-Fl ight  
Aerodynamic F a c i l i t y  and t h e  Ames Prototype Hypervelocity Free-Fl ight  
Faci  1 i t y  . 

MODELS 

Two classes of  model were t e s t e d :  f irst ,  a set  of t h r e e  sphere-cone 
models designed t o  have n e a r l y  cons tan t  drag and a zero l i f t - c u r v e  s lope  a t  
moderate angles  of  a t t a c k  ( f i g s .  l ( a ) ,  (b) ,  and ( c ) ) ;  and, second, a p a i r  of 
large-angle  b l u n t  cones designed t o  y i e l d  very low m/CDA ( f i g s .  l ( d )  and ( e ) ) .  

The f i rs t  group was designed using Newtonian impact theory  t o  have 
cons tan t  drag independent of angle  of  attack and zero l i f t  a t  angle  of a t t a c k .  
The b a s i s  f o r  t h i s  design i s  t h e  r e l a t i o n s h i p  

c = c  - 2cDo ( r e f .  6)  
La Pmax 

which, f o r  C = 2 ,  gives  t h e  r e s u l t  t h a t  shapes having a drag c o e f f i c i e n t  

of  1 a l s o  have a l i f t - c u r v e  s lope  of 0 .  The r e s u l t  i s  a family of cones of  
varying angle  and b luntness  s t a r t i n g  with a sharp-nosed 45" ha l f -angle  cone 
and ending with a hemisphere, as shown i n  f i g u r e  2 .  

Pmax 

The f i rs t  two models were s e l e c t e d  on t h i s  b a s i s  and had cone ha l f -angles  
(8,) of 44.1" and 40.8", nose-bluntness r a t i o s  ( rn / rb)  of 0 . 3 3  and 0.67, and 
center -of -gravi ty  loca t ions  (X /d) of  0 .32  and 0.28 (from t h e  model nose) ,  
r e spec t ive ly ,  as shown i n  f i g u r e s  l ( a )  and (b) .  

cg 
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The third zero-lift model was designed to have zero lift at a small 
finite angle of attack on the premise that since the model would normally be 
oscillating during reentry, it might be possible to extend the angle-of-attack 
range in which the lift was essentially zero and the drag variation accept- 
able. 
slightly less than 1(CD # 0) which from the above equation gave a slightly 
positive lift-curve slope (0 < CL, << 1) at These considerations 
resulted in a model with a cone half-angle of 27", a nose bluntness of 0.95, 
and a center-of-gravity location of 0.27 (fig. l(c)). 

This was accomplished by designing a shape with drag coefficient 

a = 0".  

The high-drag configurations (also blunt cones) had cone half-angles of 
55" and 60", nose-bluntness ratios of 1.0 and 0.2, and centers of gravity at 
0.17 and 0.23 diameter from the nose, respectively, as shown in figures l(d) 
and (e). The 55" cone was also tested with an afterbody consisting of a 30" 
half-angle spherically blunted cone with a bluntness ratio (ra/rb) of 0.5. 
The center of gravity for this configuration (fig. 1(f)) is located at the 
point of maximum diameter, 0.24 diameter from the nose. The 60" cone had a 
corner-radius ratio (rc/rb) of 0.1, whereas all other models had sharp corners. 

With the exception of model F, these models were homogeneous so that 
their centers of gravity fell at their respective centers of volume. Model F, 
however, was bimetallic, as noted in figure l(f); thus its center of gravity 
was not coincident with the center of volume. 

Photographs of the models and two typical sabots are shown in figure 3.  
The sabot shown in figure 3(d) is canted 10" to launch the model at an angle 
of attack. 

The model geometries are summarized in table 1. 

TESTS 

Model configurations A through E were tested in free flight, in still air, 
in the Ames Hypervelocity Free-Flight Aerodynamic Facility at Mach numbers 
near 10 and at Reynolds numbers near 300,000, based on the model diameter and 
free-stream air properties. 
flight, in still air, but in the Ames Prototype Hypervelocity Free-Flight 
Facility at Mach numbers from 3 to 16 and for Reynolds numbers from 160,000 to 
590,000. 

Tests of configuration F were also made in free 

Table 2 lists the test conditions. 

Model Launching 

The models tested in the aerodynamic facility were launched from a 
25.4 mm (1 in.) diameter deformable-piston, light-gas gun (ref. 7). The 
models tested in the prototype facility were fired from a similar gun, 12.7 mm 

I 
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(0.5 in.) in diameter. 
piece polycarbonate plastic (Lexan) sabots (fig. 3 ) .  

The models were supported in the guns by means of four- 

Instrumentation 

Shadowgraphs were obtained in orthogonal planes at 16 observation 
stations over a ballistic flight of 23 meters (75 ft) (aerodynamic facility) 
and at 11 observation stations for a ballistic flight of 12 meters (40 ft) 
(prototype facility). The photographic observation stations in each of the 
facilities contain accurately calibrated fiducial systems so that the model 
spatial position and angular orientation are determined accurately over the 
entire length of the flight. 
flight between stations. 

Electronic chronographs measured the time of 

DATA REDUCTION 

A computer program, described in detail in reference 8, was used to 

This data-reduction program uses the time- 
determine the aerodynamic coefficients of each configuration by analyzing 
their free-flight motions. 
distance data of each flight to determine drag coefficient and the linear dif- 
ferential equation of motion given by Nicolaides (ref. 9) to determine the 
lift-curve slope and the static and dynamic stability. This assumption of 
linear aerodynamics does not prevent the use of this method for bodies with 
nonlinear stability coefficients. 
the above method is used to reduce data from several flights at different 
amplitudes. 
tudes are then used in an additional program (also described in ref. 8) to 
obtain the desired nonlinear coefficients as a function of angle of attack. 

For models having nonlinear coefficients, 

These quasilinear coefficients f o r  various angle-of-attack ampli- 

Two representative pitching and yawing motions from the present tests, as 
viewed in the a-6 plane, are shown in figure 4. The angles of attack and 
sideslip determined from shadowgraphs at each station are indicated by the cir- 
cular symbols. The curves show the theoretical motions which best fit the 
experimental data; the asterisks are the theoretical points that correspond to 
the experimental values. 

RESULTS AND DISCUSSION 

+ Cm,, and the center-of- 
cmci c1 

The aerodynamic coefficients CD, Cm, CL, 5 ,  
pressure location determined experimentally are presented in figures 5 through 
13 f o r  the zero lift models A, B, and C, and in figures 14 through 22 f o r  the 
high-drag models D and E. Additional data for one of the high-drag configur- 
ations, model F, showing the effect of afterbody shape, Mach number, and 
Reynolds number are presented in figures 23 through 25. 

I 
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Zero-Lift  Bodies (Sphere S u b s t i t u t e s )  

The design requirements f o r  t h e  sphe re - subs t i t u t e  bodies  (A, B,  and C) 
are drag c o e f f i c i e n t s  ( ~ 1 )  and l i f t - c u r v e  s lopes  (m0) which are e s s e n t i a l l y  
i n v a r i a n t  with p i t c h i n g  amplitude - a t  least  f o r  moderate p i t c h  amplitudes.  
The experimental  d a t a  i n  f i g u r e  5 show t h a t  t h e  drag c o e f f i c i e n t s  were essen- 
t i a l l y  cons tan t  from a = 0" t o  14" f o r  each of t h e  t h r e e  models, varying only 
by about 1 pe rcen t .  These d a t a  a l s o  show t h a t  t h e  drag c o e f f i c i e n t  decreased 

ever ,  t h a t  t h i s  last  observat ion i s  p e r t i n e n t  only because o f  t h e  r e s t r i c t i o n s  
placed on t h e  v a r i a t i o n  of  cone angle  and b luntness  due t o  t h e  spec i f ica t icm 
of  zero l i f t - c u r v e  s lope .  
(refs. 10 through 15) ,  and presented  i n  f i g u r e  6, show t h a t  f o r  e i t h e r  a sharp  
cone or cones with cons tan t  b luntness  r a t i o ,  a decrease i n  cone angle  is  accom- 
panied by a decrease i n  drag  c o e f f i c i e n t .  
ha l f -angles  below some c r i t i c a l  va lue  a change i n  nose b lun tness  can have a 
l a r g e  effect  on t h e  drag c o e f f i c i e n t .  Thus it becomes apparent ,  with regard 
t o  f i g u r e  6,  t h a t  t h e  decrease i n  drag c o e f f i c i e n t  between models A and B i s  
due p r imar i ly  t o  t h e  decrease i n  cone angle  and i s  inf luenced only s l i g h t l y  by 
t h e  d i f f e rence  i n  b luntness .  However, t h e  f u r t h e r  decrease i n  drag of model C 
due t o  decreasing cone angle  i s  l a r g e l y  o f f s e t  by t h e  inc rease  i n  nose 
b luntness .  

1 with inc reas ing  b luntness  and decreasing cone angle .  I t  should be noted,  how- 

Drag d a t a  c o l l e c t e d  from a number of sources  

These d a t a  a l s o  show t h a t  f o r  cone 

The drag d a t a  i n  f i g u r e  6 , a r e  compared with r e s u l t s  of s e v e r a l  
t h e o r e t i c a l  c a l c u l a t i o n s  ( r e f s .  16-19) wi th  t h e  fol lowing r e s u l t s :  

1. The drag of po in ted  cones a t  zero angle  of a t t a c k  i s  p red ic t ed  with 
good accuracy by conica l  flow theory  ( r e f .  16) up t o  t h e  cone angle  f o r  which 
t h e  bow wave becomes detached. 

2 .  In  t h i s  same cone-angle range, t h e  method of  Rakich ( r e f .  17) can be 
used t o  p r e d i c t  t h e  e f f e c t  of nose b luntness  r a t i o  f o r  b luntness  r a t i o s  from 
0 t o  1 .0 .  This method shows t h a t  f o r  small amounts of  b luntness  ( rn/Q = 0.2)  
t h e  e f f e c t  o f  b luntness  on drag i s  n e g l i g i b l e  and t h a t  f o r  a given amount of 
b luntness  t h e  effect  of b luntness  decreases  with inc reas ing  cone angle .  

3 .  For t h e  range of cone angles  where t h e  bow wave i s  detached f o r  a l l  
b luntness  r a t i o s  t h e  method of  i n t e g r a l  r e l a t i o n s  ( r e f .  18) and t h e  method 
of  Kaattari ( r e f .  19) do a reasonable  job  of p r e d i c t i n g  t h e  drag c o e f f i c i e n t .  
In  t h i s  cone-angle range t h e  effect  of b luntness  i s  n e g l i g i b l e .  

Although t h e  theory  used t o  design t h e  sphe re - subs t i t u t e  shapes s p e c i f i e d  
of 2 . 0  t o  ob ta in  a l i f t - c u r v e  s lope  of  a drag c o e f f i c i e n t  of  1 .0  and a C 

0 ( r e f .  6) only model A had a drag c o e f f i c i e n t  of approximately 1 .0  ( f i g .  5 ) .  
The o t h e r  two models, having smaller cone angles  and l a r g e r  b luntness  r a t i o s ,  
are more n e a r l y  approximated i f  a modified Newtonian p res su re  c o e f f i c i e n t  

Pmax 

For p i t c h  amplitudes up t o  Z O O ,  t h e  d a t a  presented  i n  f i g u r e  7 show t h a t  
models A and B do i n  fact  have nea r ly  zero l i f t - c u r v e  s lopes ,  as des i r ed .  

5 



Model C y  however, although having n e a r l y  zero l i f t - c u r v e  s lope ,  does show a 
s i g n i f i c a n t  v a r i a t i o n  of  t h e  l i f t - c u r v e  s l o p e  with p i t c h i n g  amplitude,  becom- 
i n g  inc reas ing ly  nega t ive  with inc reas ing  amplitude.  

These l i f t  d a t a  and t h e  drag  d a t a  i n  f i g u r e  5 show t h a t ,  f o r  models A and 
B, it was p o s s i b l e  t o  design a model wi th  cons tan t  drag'  and n e a r l y  zero l i f t  a t  
least  f o r  t h e  p i t c h i n g  amplitudes of t h e s e  tests.  The design philosophy used 
f o r  model C ,  however, d i d  not  r e s u l t  i n  l i f t - c u r v e  s lopes  nea re r  t o  zero a t  
t h e  h ighe r  amplitudes than  those  obtained f o r  models A and B, as was expected. 

C 

Analyzing these  l i f t  d a t a  by t h e  method presented  i n  re ference  20, f o r  
non l inea r  moments, r e s u l t s  i n  t h e  v a r i a t i o n  of CL versus  a shown i n  f i g -  
u re  8. For angles  of  a t t a c k  t o  about l o " ,  a l l  t h r e e  conf igura t ions  had l i f t  
c o e f f i c i e n t s  between +0.01 and -0.017. A t  angles  g r e a t e r  than  l o " ,  t h e  l i f t  
c o e f f i c i e n t s  f o r  model C decreased q u i t e  r a p i d l y  with inc reas ing  angle  o f  
at tack. 

d a t a  i n  f i g u r e  9 show a s l i g h t  decrease i n  ( c m J  The s t a t i c  s t a b i l i t y  

s t a b i l i t y  with inc reas ing  p i t c h  amplitude f o r  models A and B,  b u t  f o r  model C 
t h e  s t a b i l i t y  remains e s s e n t i a l l y  cons tan t .  

Analysis of  t h e s e  nea r ly  l i n e a r  moment d a t a  by t h e  nonl inear  method of 
re ference  20 shows, as expected, nea r ly  l i n e a r  v a r i a t i o n s  o f  Cm with a 
( f i g .  10) .  
model A with t h e  cen te r  of g r a v i t y  moved forward from 32 t o  2 8  percent  of t h e  
diameter  a f t  of  t h e  nose t o  match t h e  cen te r -o f -g rav i ty  loca t ions  o f  models B 
and C.  These .da ta  show t h a t  f o r  p i t c h  amplitudes below 10" t h e  s t a t i c  
s t a b i l i t y  of  models A and B were e s s e n t i a l l y  t h e  same. 

and Cm f o r  
Cmc, 

Figures  9 and 10 a l s o  show ca lcu la t ed  va lues  of  

The l i f t  and moment c o e f f i c i e n t s  ( f i g s .  8 and 10) determined from t h e  
experimental  d a t a  by t h e  method of re ference  20, and t h e  drag c o e f f i c i e n t s  
( f i g .  5) have been used t o  eva lua te  s t a t i c  margins [ ( X  

A, B, and C ,  which a r e  presented  i n  f i g u r e  11. These d a t a  ( f i g s .  9 and 11) 
show t h a t  f o r  model A a decrease i n  s t a t i c  s t a b i l i t y  with inc reas ing  p i t c h  amp- 
l i t u d e  occurred with no d i s c e r n i b l e  change i n  t h e  s t a t i c  margin; f o r  model B a 

- Xcg)/d] f o r  models CP 

I( decrease  i n  s t a b i l i t y  was accompanied by a corresponding decrease i n  t h e  
s t a t i c  margin; 

3 
and f o r  model C t h e  s t a b i l i t y  remained cons tan t  with an 1 

i nc rease  i n  t h e  s t a t i c  margin. 
I 

I Also shown i n  f i g u r e  11 a r e  s t a t i c  margins p red ic t ed  f o r  t h e  models by 
Newtonian impact theory.  These t h e o r e t i c a l  p r e d i c t i o n s  agree well with t h e  t 

models B and C.  i 

/j 

I 
ca lcu la t ed  d a t a  f o r  a l l  t h r e e  models bu t  do not  p r e d i c t  t h e  change i n  t h e  
center-of-pressure loca t ion  as a func t ion  of t h e  changing amplitude f o r  

I 

The dynamic damping parameter,  5 ,  and t h e  dynamic s t a b i l i t y ,  Cmq + Cm6, 

These d a t a  show t h a t  models A and B were both dynamically 
f o r  t h e  t h r e e  zero l i f t  models (A, B y  and C) are presented  i n  f i g u r e s  1 2  and 11 

i! 13, r e spec t ive ly .  
1 
ii 

6 



s t a b l e  and t h a t  t h e  s t a b i l i t y  was nea r ly  cons tan t  f o r  t h e  p i t ch ing  amplitudes 
of t hese  tests. Model C y  however, appears d e f i n i t e l y  t o  be dynamically 
uns tab le  (5 p o s i t i v e ) .  

High-Drag Bodies 

The experimental ly  determined drag c o e f f i c i e n t s  i n  f i g u r e  14 f o r  models D 
and E ( the  two high-drag models) show t h a t  model E with 60" cone ha l f - ang le  
had about a 4-percent h igher  drag c o e f f i c i e n t  than  d i d  model D (55").  I t  can 
be seen from f i g u r e  6 t h a t  both conf igura t ions  l i e  i n  o r  near  t h e  regime where 
the  bow shock i s  detached f o r  sharp  cones and t h e  b luntness  r a t i o  has  a n e g l i -  
g i b l e  effect  on t h e  drag. The drag c o e f f i c i e n t  obtained f o r  model E ,  al though 
predic ted  w e l l  by Newtonian theory  (cp 

max 
than t h a t  shown i n  f i g u r e  6 f o r  a comparable model without  t h e  shoulder  r ad ius .  
This reduct ion  i n  drag i s  apparent ly  due t o  a change i n  t h e  flow f i e l d  i n  the  
v i c i n i t y  of t h e  rounded shoulders .  

= 2.0, f i g .  14). i s  somewhat lower 

The l i f t - c u r v e  s lopes  (CLcl> and t h e  l i f t  curves der ived  from them by t h e  
nonl inear  method of re ference  20 a r e  presented  i n  f i g u r e s  15 and 16. There 
appears t o  be no s i g n i f i c a n t  d i f f e r e n c e  between t h e  two conf igura t ions  with 
r e spec t  t o  l i f t ,  except f o r  values  of CL 

I t  should be poin ted  ou t ,  however, t h a t  i n  t h e  angle  range i n  which these  lift 
curves diverge,  CL i s  no t  def ined  as wel l  as a t  lower angles  because t h e  non- 
l i n e a r  terms used i n  t h e  ana lyqis  become dominant. 
spur ious ,  s i n c e  t h e  l i f t - c u r v e  s lopes  measured were nea r ly  cons tan t  over t h e  
amplitude r ange ,o f  t hese  t e s t s  ( t o  ct = 15.5")  a t  approximately -1.0. 

S t a t i c - s t a b i l l t y  d a t a  e m a )  f o r  models D and E ( f i g .  17) show t h a t  both 

models were s t a t i c a l l y  s t a b l e  f o r  a l l  of t h e  p i t ch ing  amplitudes of  t h e s e  
tests. Howeyer, t hese  d a t a  a l s o  show t h a t  f o r  t h e  55" b l u n t  cone (model D), 
t he  s t a b i l i t y  decreased with inc reas ing  p i t c h  amplitude and f o r  t h e  60" b l u n t  
cone (model E ) ,  t h e  s t a b i l i t y  increased.  O f  t h e  f i v e  models t e s t e d ,  only 
model E became more s t a b l e  with increas ing  p i t c h  amplitude.  Since model E was 
t h e  only one o f  t h e  f i v e  models t o  have a rounded shoulder ,  t h e  p re s su re  d i s -  
t r i b u t i o n  i n  t h e  v i c i n i t y  of t h e  shoulder  could be inf luenced  by a movement of 
t h e  sepa ra t ion  p o i n t ,  whereas f o r  t h e  sharp  cornered models t h e  sepa ra t ion  i s  
f i x e d  a t  t h e  corner .  

a t  angles  of a t t a c k  above about 12" .  

These terms may be 

Pitching-moment c o e f f i c i e n t s  ca l cu la t ed  from t h e  experimental  d a t a  by t h e  
method of r e fe rence  20, based on a l i n e a r  p l u s  a cubic  r ep resen ta t ion ,  are 
presented  i n  f i g u r e  18. 

These moment d a t a  ( f i g .  18) and t h e  drag and l i f t  c o e f f i c i e n t s  i n  
f i g u r e s  14 and 16 were used t o  c a l c u l a t e  center-of-pres 'sure loca t ions  (Xc /d) 
and s t a t i c  margins [(X, - Xcg)/d] f o r  models D and E. 
and 20, r e spec t ive ly )  sgow t h e  ra te  of change of  t h e  c e n t e r  o f  p re s su re  with 
r e spec t  t o  angle  o f  a t t a c k  t o  be nea r ly  t h e  same f o r  each model even though 
t h e  ra te  o f  change o f  t h e  pitching-moment-curve s lopes  with angle  of a t t a c k  is  

The d a t a  ( f i g s .  18 
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considerably d i f f e r e n t  (see f i g .  17 ) .  These d a t a  a l s o  show t h a t  t h e  cen te r -  
of-pressure loca t ion  f o r  t h e  55" cone i s  approximately 40 percent  of t h e  diam- 
e ter  f a r t h e r  a f t  than t h a t  f o r  t h e  60" cone. The c e n t e r s  o f  p re s su re  of  t h e  
two models p red ic t ed  by Newtonian impact theory  do no t  show t h i s  l a r g e  
d i f f e r e n c e .  In  fact ,  Newtonian theory  p r e d i c t s  no d i f f e r e n c e  a t  a l l .  

I t  can be seen i n  f i g u r e s  14, 17, 19, and 20 t h a t  Newtonian theory  does 
a reasonable  job o f  p r e d i c t i n g  t h e  aerodynamic c h a r a c t e r i s t i c s  of t h e  60" 
b l u n t  cone but  does a poor job  o f  p r e d i c t i n g  t h e  c h a r a c t e r i s t i c s  f o r  t h e  55" 
b l u n t  cone. 
( rn / rb  = 0.20) ,  t h e  bow shock wave i s  e s s e n t i a l l y  conica l  and t h e  shock-wave 
s tand-of f  d i s t ance  i s  small; whereas, f o r  t h e  55" cone t h e  b luntness  i s  l a r g e  
( rn / rb  = l.OO), t h e  bow shock wave i s  e s s e n t i a l l y  s p h e r i c a l ,  and t h e  s tand-off  
d i s t a n c e  from t h e  body i s  s i g n i f i c a n t .  I t  i s  apparent ly  t h i s  l a rge  effect  of 
b luntness  t h a t  moved t h e  cen te r  of  p r e s s u r e ' s 0  much f a r t h e r  a f t  f o r  t h e  55" 
cone than f o r  t h e  60" cone. The extreme case  of  a r i g h t  c i r c u l a r  cy l inde r  
i l l u s t r a t e s  t h i s  we l l ,  because Newtonian theory  p r e d i c t s  no s t a b i l i t y ,  y e t  
t h i s  shape i s  h ighly  s t a b l e .  

The reason may be t h a t  f o r  t h e  60" cone t h e  b luntness  i s  small 

+ c ) f o r  

models D and E as a func t ion  o f  p i t c h i n g  amplitude a r e  presented  i n  f i g -  
u re s  2 1  and 2 2 ,  r e s p e c t i v e l y .  
equal  damping c h a r a c t e r i s t i c s  which a r e  e s s e n t i a l l y  independent of p i t c h i n g  
amplitude f o r  t h e  amplitudes of  t hese  tes ts .  
ing  parameter of  -4 r ep resen t s  a convergence i n  t h e  model motion of  
approximately 3 t o  4 percent  p e r  cyc le .  

bq m& 
The damping parameter ( E )  and t h e  dynamic s t a b i l i t y  

Both models a r e  dynamically s t a b l e  with nea r ly  

I t  should be noted t h a t  a damp- 

The aerodynamic c o e f f i c i e n t s  determined f o r  model D a r e  compared i n  
f i g u r e s  23 t o  25 with c o e f f i c i e n t s  f o r  an i d e n t i c a l  forebody with a 30" h a l f -  
angle  b l u n t  cone a f te rbody (model F) and a center -of -gravi ty  loca t ion  7-1/2" 
f a r t h e r  a f t .  

The drag c o e f f i c i e n t s  ( f i g .  23) a r e  nea r ly  t h e  same. However, t h e  drag 
of model D decreases  a l i t t l e  more r a p i d l y  with inc reas ing  angle  of  a t t a c k .  

I 
The two models have i d e n t i c a l  s t a t i c  s t a b i l i t y  ( f i g .  24) when compared 

f o r  model D ,  f i g .  19, was t r a n s f e r r e d  t o  f o r  i d e n t i c a l  moment cen te r s  (ha 
match t h e  moment c e n t e r  o f  model F f o r  t hese  comparisons). 
po in ted  out  a t  t h i s  t i m e  t h a t  t h e  f i d u c i a l  system i n  t h e  f a c i l i t y  i n  which t h e  
tests o f  model F were performed (Ames Prototype Hypervelocity Free-Fl ight  

of t h e  model t r a n s l a t i o n  i n  t h e  y and z d i r e c t i o n s  requi red  f o r  determining 
t h e  l i f t - c u r v e  s lope .  However, s i n c e  the  drag c o e f f i c i e n t s  f o r  model F (with 
af terbody)  d id  not  decrease with inc reas ing  angle  of a t t a c k  as much as t h a t  
f o r  model D and s i n c e  t h e  s t a t i c  s t a b i l i t y  ( Cma) was the  same f o r  both models, 

normal fo rce  but  d id  s l i g h t l y  inc rease  t h e  a x i a l  fo rce  a t  t h e  h igher  angles  of 
a t t a c k .  

I I t  should be i 
I 
B 

1 

1 

F a c i l i t y )  i s  not  s u f f i c i e n t l y  d e t a i l e d  t o  enable  t h e  accu ra t e  measurement ?i I 

i t can be reasoned t h a t  t h e  presence of t h e  af terbody d i d  not  affect  t h e  t 1 
I 
I 
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The damping parameter,  5 ,  f o r  t h e s e  two models ( f i g .  25) i s  t h e  same, 
wi th in  measurement accuracy, d e s p i t e  t h e  moment-center d i f f e rences .  Unpub- 
l i shed  d a t a  f o r  model F i n  t h e  t r anson ic  reg ion  have shown t h a t  a 5-percent 
forward s h i f t  i n  t h e  center -of -gravi ty  loca t ion  r e s u l t e d  i n  a s i g n i f i c a n t  
i nc rease  i n  t h e  dynamic s t a b i l i t y .  
i s  no t  apparent from t h e  d a t a  presented  he re in .  

S imi la r  improvement a t  a Mach number of 10 

Figures  23 t o  25 a l s o  inc lude  d a t a  f o r  model F a t  Mach numbers of 3 and 
16 and f o r  Reynolds numbers from 200,000 t o  400,000. 
effect  of  t hese  v a r i a t i o n s  i n  Mach number and Reynolds number was i n  t h e  
s t a t i c  s t a b i l i t y  f o r  a Mach number of 3 .  A t  t h i s  Mach number t h e r e  was a 
cons iderable  decrease i n  s t a t i c  s t a b i l i t y  (-0.145) with r e spec t  t o  t h a t  a t  a 
Mach number of  10 (-0.25). 
unpublished d a t a  obtained a t  a Mach number o f  1 . 2 .  

The only s i g n i f i c a n t  

These Mach number 3 r e s u l t s  compare favorably  with 

CONC LU S IONS 

The s t a t i c  and dynamic aerodynamic c h a r a c t e r i s t i c s  of t h r e e  zero l i f t -  
curve s lope ,  constant-drag bodies  and two h igher  drag bodies  having poss ib l e  
app l i ca t ion  as Mars probe-lander conf igura t ions  have been determined exper i -  
mental ly  i n  f r e e  f l i g h t ,  i n  s t i l l  a i r .  The t e s t  d a t a  i n d i c a t e  t h e  fol lowing:  

1. Using t h e  Newtonian r e l a t i o n s h i p  CL, - - Cpma, - 2cD, it i s  poss ib l e  

t o  design a family o f  s p h e r i c a l l y  b l u n t  cones t h a t  have e s s e n t i a l l y  cons tan t  
drag and nea r ly  zero l i f t  a t  angles  of a t t a c k  less than  15".  The t h r e e  con- 
f i g u r a t i o n s  designed o n . t h e  b a s i s  of  t h e  above r e l a t i o n s h i p  show, experimen- 
t a l l y ,  t h a t  t h e  combination of  decreasing cone angle  and increas ing  nose b lun t -  
ness  requi red  by these  c o n s t r a i n t s  r e s u l t e d  i n  a decrease i n  t h e  dynamic 
s t a b i l i t y .  In  fac t ,  f o r  t h e  t h r e e  models t e s t e d  t h e  dynamic s t a b i l i t y  va r i ed  
from s t a b l e  t o  uns t ab le .  

2 .  O f  t h e  two high-drag models t e s t e d  (55" and 60" b l u n t  cones) ,  t h e  60" 

O f  t h e  f i v e  conf igura t ions  inves t iga t ed ,  on ly  t h e  60" cone showed 
cone had t h e  h igher  drag by about 4 percen t  bu t  t h e  55" cone was t h e  more 
s t a b l e .  
i nc reas ing  s t a t i c  s t a b i l i t y  with inc reas ing  angle  of  a t t a c k .  The l i f t - c u r v e  
s lope  and dynamic s t a b i l i t y  were n e a r l y  t h e  same f o r  both t h e  5 5 O  and 60" 
shapes,  and i n  both cases  t h e  models were s t a t i c a l l y  and dynamically s t a b l e .  

3. The add i t ion  of  an a f te rbody t o  t h e  55" cone d i d  n o t  apprec iab ly  
affect  t h e  aerodynamics f o r  t h e  range of  angles  of  ' a t tack  of  t h e s e  tests.  

4. For a l l  models, t h e  s t a t i c  and dynamic aerodynamic c h a r a c t e r i s t i c s  
were o r d e r l y  and gene ra l ly  n e a r l y  l i n e a r  and d isp layed  no unusual 
c h a r a c t e r i s t i c s .  

Ames Research Center 
Nat ional  Aeronautics and Space Adminis t ra t ion 

Moffet t  F i e ld ,  C a l i f o r n i a  94035, Sept .  19, 1969 
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TABLE 1 . -  SUMMARY OF MODEL GEOMETRIES 

Cone half-angle (e,), deg 

Bluntness ratio (rn/rb) 

Corner radius ratio (rc/rb) 

Center of gravity from 
nose (Xcg/d) 

Afterbody cone half- 
angle (ea), deg 

Afterbody bluntness 
ratio (ra/rb) 

7- Model class 
I 

Configuration 
-- - 

-- - 
Nominal diameter, cm 

. - _ _  

. 

Constant drag (zero lift) 

A 

4 4 . 1  

0 . 3 3  

0 

0 . 3 2  

90 

W 

2.032 

B 

4 0 . 8  

0.67 

0 

0 . 2 8  

90 

m 

2 .032  
.~ .- 

C 

27.0 

- -. - - - . - - 

0.95 

0 

0.27 

90 

m 

2.032 
.. . 

. _. 

High drag 

D 

55.0 
-.. 

1.00 

0 

0.17 

90 

m 

2 .032  

E 

60.0 

- ~. 

0.20  

0.10 

0 . 2 3  

90 

m 

2.032 

F 

55.0 

1.0( 

0 

~ 

0.24 

30 

0.2s 

1.01 

1 2  

i 
E 

p. 



86 
92 

1.330 .278 
1.362 .285 

TABLE 2 . -  MODEL MEASUREMENTS, T E S T  C O N D I T I O N S ,  AND R E S U L T S  

(a) Aerodynamic facility 

Model A; e C  = 44.1" 

-0.817 -0.092 '10.86 0.3211 0.0768 5.31 7.66 23.2 0.27 ! 0.0117 2.0368 0.9340 0.1872 0.6360 20.70 0.1340 
-6.071 -.379 10.00 .3210 .0761 1.89 2.67 11.6 . 2 2  ,0117 2.03561 .9200 .la29 .6368 20.84 .1346 

.6353 20.86 ,1346 

.6365 21.02 .1373 
,6377 20.67 .1345 
.6367 20.77 .1356 
.6378 20.66 .1342 
.6364 20.69 ,1341 
.6376 20.72 .1351 

88 0.984' 0.275 -0.112 
98 .989 .275 -.a31 
104 .991 ,275 -.118 
111 .985 .276 -.005 
112 .970 .265 -.071 
113 .987 .270 -.191 

-2.728 -.184 10.88 .3181 
-2.396 -.161 10.66 ,3111 
-2.355 -.164 10.75 .3169 
-1.103 -.110 10.82 ,3176 
-7.589 -.417 10.64 .3112 
.241 -.039 10.78 .3154 

,0762 6.24 8.92 14.9 .36 ,0099 
,0761 8.70 .11.96 4.3 .29 ,0076 
.0767 8.47 10.75 2.3 .35 ,0089 
,0764 8.60 12.44 37.7 .23 ,0129 
,0763 8.38'11.50 41.1 .23 ,0099 
.0763 13.79116.86 4.8 .37 .0127 

.1832 

.1768 

.1859 
,1831 
.1845 
.1847 
.1834 
.1840 
.1839 

2.0366 ,9213 
2.0325 ,8999 
2.0356 .9275 
2.0366 .9171 
2.0325 .9224 
2.0335 ,9241 
2.0330 .9195 
2.0345, .9209 

,0765 12.46 17.04 33.40 .34 ,0135 
,0766 11.98 15.77 .29 .0147 
.0764 ~13.30~18.10~ z:: I ,729 I ,0122 

I I I I 1- 

Model 8; Bc = 40.8" 

.315 

.SO8 

.308 
,298 
.299 
.298 
.303 
.286 ;::: i 

- .226 
.239 
.087 

-2.247 -.166 10.94 .3260 
-1.622 -.113 11.06 .3286 
-3.827 -.229 11.05 ,3260 
-1.035 -.094 10.77 .3187 
-3.847 -.229 10.47 .3104 
-5.914 -.336 10.78 ,3182 
-.576 -.065 10.71 .3167 
.639 -.003 10.73 .3176 
.811 -.001 10.60 .3139 

-4.681 - 267 10 94 ,3228 
.9891 :003 /10:811 .3209 I 

,0776 3.24' 4.56' 1 8 . 2  
,0774 4.39 6.20 77.5 
.0771 5.77 8.07 25.3 
,0772 8.67 11.44 3.2 
.0772 8.71 10.97 1.97 
,0770 9.44 12.65 4.2 
,0771 8.30 11.31 6.3 
.0773 12.75 16.41 2.3 

.41 

.46 

.46 

.33 

.33 

.45 

.30 

.30 

.41 

.34 

.27 

.0099 

.0132 

.0122 

.0114 
,0107 
.0152 
.0127 
,0079 
,0099 

I .0137 1 ,0165 

2.0351 .9948 
2.0340 .9941 
2.0292 .9848 
2.0333 .9918 
2.0351 ,9986 
2.0330 .9882 
2.0343 .9936 
2.0290 .9890 , 
2.0302 .9826 
12.0239, .9675 I 
2.0320 .9929 

.2030 

.2026 

.1996 
,2022 
.2040 
.z003 
.2025 
.z006 
.1988 
.1932 
.2020 

.1268 

.1265 

.1267 

.1263 

.1258 

.1265 

.1261 

.1264 

.1274 

.1285 

.1264 

.6294 20.30 

.6275 20.30 

.6307 20.32 

.6290 20.28 

.6283 20.27 

.6293 20.39 

.6277 20.30 

.6275 20.30 

.035 

.115 
-.027 
.159 
.205 
.098 
.127 

- .008 

.0773 11.77 16.50 7.1 

.0773 12.19 15.67 2.3 
,0774 1iz.45116.89( 4.3 I 

Model C ;  ec = 27' 

,0772 3.62 5.01 12 .5  
,0769 7.78 10.88 121.1 
.0767 4.70 6.46 29.4 
.0768 8.05 11.16 23.7 
,0767 10.21 12.49 1.7 
.0762 8.05 11.36 4.8 
,0767 8.21 10.87 
,0772 13.21 18.86 15.6 
.0772 ,13,45~18.10~ i 
.0771 12.52 17.82 21.2 
,0772 13.94 18.31 

Model D; Bc = 55' 

.32 

.47 

.31 

.49 

.37 

.36 

.39 

.42 

.44 

.32 

.37 

,2801 
.2801 
.2795 
.2765 
.2764 
.2758 
.2785 
.2793 
.2757 
.2775 1 .2755 

.6240 18.22 

.6242 18.29 

.6148 18.26 

.6234 18.22 

.6245 18.24 

.6214 18.28 
,6234 18.23 
.6240 18.23 

,1016 
.1015 
,1012 
.1015 
.1017 
.1011 
.1012 
,1014 
.1024 
.1011 
,1022 

87 .858 
102 .858 
103 .855 
106 .867 
125 .866 
129 .859 

.865 

.199 

.197 

.205 

.203 

.196 

.202 

,199 

-.027 7.258 .350 11.20 .3317 
-.069' 6.932 .328 11.06 .3270 
.OS8 -5.679 -.355 11.13 ,3273 

-.005 5.027 .228 11.05 .3247 
-.231 -1.337 -.134 11.12 ,3266 
-.192 5.023 .217 11.15 .3248 
-.127 .488 - . O B  10.82 .3179 

,0081 
,0107 
,0094 
,0089 
,0101 
,0140 
,0097 
,0195 

2.0335 1.234 
2.0371 1.234 
2.0348 1.232 
2.0295 1.223 
2.0310 1.222 
2.0315 1 . 2 2 2  
2.0325 1.229 
2.0320 1.233 
2.0302 1.221 .6223 18.25 

6238 18.15 1 :6234118.26 
-1.068 
-1.275 
-.972 
- ,894 

- 1.004 
- .964 
-1.053 
-1.000 
- ,972 - 

.40 

.27 

.44 

.36 

.34 

.29 

.36 

.54 

.51 

.1007 

.0981 

.0996 

.1008 

.1011 

.0997 

.0998 

.1011 

.1005 

.0783 4.44 6.24 16.9 

.0786 2.53 3.30 19.6 
,0790 1.57 2 . 2 2  12.3 
,0791 8.72 12.24 9.6 

.0101 2.0300 .5817 

133 1.318 .272 

151 1.280 .260 
1 134/1.3131 .274 I 15211.2881 2%; 
153 1.285 



TABLE 2.- MODEL MEASUREMENTS, T E S T  CONDITIONS,  AND RESULTS - Concluded 

r 

90.1.404 
95 1.436 
96 1.392 
97 1.416 
107 1.357 
108 1.390 
109 1.380 
110 1.366 
135 1.322 
136 1.330 
137 1.312 

, 138 1.330 

0.159 

.162 

.167 

.156 

.163 

.157 

.169 

.170 

.172 

.167 

_- -  
_ - -  

-1.178 

-1.098 

-1.047 
- .965 
-1.053 
-.951 -. 881 
-.914 
-. 897 
-.919 

_ _ _  
_ _ _  

-0.377 
-2,027 
-2.363 
-5.881 
-2.766 
-3.789 
-3.543 
-2.477 
-3.434 
-1.817 
-4.088 
-3.426 

-0.165 

- ,226 

-. 242 
- .283 
- .277 
-.221 
- .262 -. 188 
-.291 
- .264 

-__  
_ _ _  

10.17 0.3151 0.0806 3.83 5.37 
10.39 .3193 1 .0801 1 2.301 3.26; 5:::61 
10.36 ,3196 ,0804 6.25 8.99' 18.7 I 

9 . 2 2  , 2 8 2 8  ,0800 2.96 4.24 18.4 
10.41 .3222 ,0806 7.55 9.85 2.6 
10.17 .3124 ,0802 7.07 9.56 4.8 
10.34 .3172 ,0801 7.33 9.68 3.1 
10.27 ,3170 ,0803 7.66 8.99 1 . 5  
10.24 .3162 .0804 11.64 15.15 2.6 
'10.18 .3151 .0806 ,11.29 15.52 29.9 
10.33 .3189 ,0804 11.80 15.24) 2.6 
~10.21 .3162 ,0807 10.92 14.95 7.6 

0.27 
.29 
.50 
.26 
.38 
.36 
.27 
.29 
.31 
.24 
.35 
.26 

0.0127 
.0137 
.0119 
.0140 
.009 1 
.0096 
.0099 
,0127 
.0112 
.0125 
.0150 
.009 1 

2.0340 0.6748 
2.0343 ,6720 
2.0338 .6727 
2.0348 ,6730 
2.0340 .6728 
2.0320 .6599 
2.0328 .6627 
2.0363 .6681 
2.0338 ,6714 
2.0356 .6721 
2.0356' ,6716 
12.0348 .6742 

0.1294 
.1289 
,1294 
.1291 
.1303 
,1254 
.1266 
.1277 
.1292 
,1290 
.1286 

, .1299 

0.5440 21.58 I 
.5447 21.57 
.5453 21.51 
.5434 21.58 
.5436 21.36 
.5427 21.73 
.5452 21.63 
.5429 21.70 
.5438 21.49 
.5433 21.58 
,5435 21.64 
.5443 21.48 

0.1940 
.1938 
.1940 
.1932 
,1946 
.1971 
.1960 
.1958 
.1946 
.1951 
,1947 
.1946 

I (b) Prototype hypervelocity free-flight facility 

i 

1530 1.266 .222 --- 
1531 1.250 . 222  --- 
1570 1.324 .237 --- 
1571 1.343 ,253 --- 
1572 1.362 .258 --- 
1573 1.330 ,245 --- 
1574 1.358 
1595 1.360 
1596 1.356 
1597 1.337 
1601 1.365 
1674 1.347 
1675 1.327 
1676 1.367 
1677 1.345 
1678 1.347 
1679 1.352 
1532 1.239 
1533 1.257 
1534 1.237 
1576 1.387 
1577' 1.372: 
'1578 1.427 

,258 
.252 
,250 
.242 
.254 
.253 
,252 
, 2 5 2  
,256 
,242 
,241 
, 2 2 0  
.221 

.246 
,284 

.217, 

4.748 
2.171 
54.252 
48.703 
.543 
2.217 
.695 

- 2 . 7 8 2  
3.008 
-.091 
-7.624 
7.771 

-11.222 
10.268 
8.967 

-12.817 
-4.597 
-.417 
.491 

-1.158 
-3.210 

,528 
- .955 
-1.159 
-29.117 
- 16.907 

i -8.263 ~ 

Model F; 8, = 55" 

3.09 0591 
3.14 :OS971 
10.88 ,2057 
10.73 .2033 
10.16 .1943 
10.55 . z o o 2  
10.25 ,1997 
11.00 ,2126 
11.21 ,2172 
11.17 .2153 
11.32 ,2198 
10.85 .2082 
10.94 ,2130 
11.08 2136 
10.56 .2031 
11.05 .2093 
11.00 ,2097 
11.47 ,2230 
11.62 .2218 
11.40 ,2157 
11.30 .2191 
10.69 ,3865 
10.66 .3782 
10.76 ,3810 
16.07 ,3131 
15.48; .2984 
16.00, ,3133 

4.11 6.08 608.0 :"oi! 1 5.451 7.791 65.0 1 
,0989 I 1.38 2.00 16.7 
,0990 1.19 1.61 40.2 
,0998 12.51 17.55 8.1 
.0992 14.53 20.03 5.7 
.lo11 8.56 11.91 39.7 
.lo06 8.17 10.82 3.2 
,1008 8.97 12.96 9.7 
.lo03 9.41 12.43 2.6 
,1009 1.69 2.18 5 . 5  
,1001 
.lo13 
. loo5  
.loo2 
.0991 
,0997 
,1014 
.loo2 
,0992 
,1010 
,1885 
,1861 
.la50 
.lo14 
,1005 
,1017 

2.68 3.66 8.9 
2.36 3.22 12.8 
5.90 8.14 11.2 
3.62 4.98 6.8 
8.58 11.46 3.1 
10.62 14.53 29.1 
7.72 9.33 2.7 
9.49 12.91 1.0 
8.84 11.48 3.2 
8.47 11.44 7.4 
15.68 22.55 8.0 
14.24 20.54 24.2 
16.12 23.27 136.9 
3.59 4.85 5 . 5  
3.17 3.95. 4.1 1 , .70 .91/ 4.3 

.20 

.18 

. 25  

.41 

.23 

.27 

.17 

.25 

.15 

. 2 8  

.37 

.33 

.24 

.18 

.36 

.40 

.36 

.29 

.40 

.24 

.16 

.51 

.57 

.29 

.46 

.58  

.32 

!1.014C! 1.0145 .2208 .2137 

_ _ _  1.0152 ,2242 
._- 1.0155 ,2240 _ _ _  1.0155 .2227 _ _ _  1.0155 .2226 _ _ _  1.0185 .2265 _ _ _  1.0160 ,2265 _ _ _  1.0157 .2237 _ _ _  1.0160 .2283 
__. 1.0155 .2250 _ _ _  1.0150 .2235 _ _ _  1.0147 .2253 
_.. 1.0147 .2240 _ _ _  1,0155 2277 _ _ _  1.0152 .2239 _ _ _  1,0132 .2233 
_.- 1,0114 .2239 _ _ _  1.0084 ,2230 _ _ _  1.0124 ,2245 _ _ _  1.0130 .2215 _ _ _  1.0142 .2230 _ _ _  1.0117 .2189 _ _ _  1.0173 .2256 _ _ _  1.0147, ,2249 _ _ _  1.0145 .2248 _ _ _  1.0160 .2244 

,0145 .7974 15.98 
.0144 .7883 16.03 
.0144 ,7912 15.95 
.0144 .SO26 15.96 
.0148 ,7792 15.92 
.0147 .7871 15.91 
,0143 .7775 16.09 
.0147 .7747 16.03 
'0144 .7716 16.12 
.0142 .7745 16.16 
,0144 .7813 16.06 
,0143 .7799 16.08 
,0146 .7764 16.06 
,0143 .7986 16.14 
,0142 ,7962 16.17 
.0146 .a102 15.73 
.0146 ,8180 15.57 
'0142 .7877 16.25 
.0140 ,7866 16.21 
,0143 .7893 16.02 
.0142 .8116 15.77 
.0146 .7898 16.03 
.0145 .7814 15.99 
.0144 .7833 16.05 
.0143 .7891 16.18 

.1824 

.1a82 

.1786 

.1790 
,1813 
.1805 
,1818 
.1a01 
.1826 
.1781 
,1816 
.1812 
.1818 
.1a15 
,1782 
.1790 
.1799 
.1819 
.1795 
.1778 
.1a38 
.3414 
.3417 
.3333 
.1823 
.1807 
.1837 



.444 d 4 - . 4 0 3 d 4  

4-40 N.C. Thread 

.100d 

.200 d 

d= 2.1 

- 

c- 

(a) Model A (Xcg/d = 0.32). 

Xcg= .280d 

2 cm 

40.8' x --v- 
.334 d 

4 - 4 0  N.C. Thread 

lOOd I 

*200d I_ 

(b) Model B (Xcg/d = 0.28). 

Figure 1.- Model configurations. 



I b . 4 1 0 d  

X c g  . 2 7 0 d  
.200 d 1- 

(c) Model C (XCg/d = 0 . 2 7 ) .  

Figure 1. - Continued. 

32 cm 

4-40 N.C. Thread 
\ 



.050 d\ 

- 45O 

‘4-40 N.C. 

.200d + 

- 7 4  .240 d 4 .303 d 

(d) Model D (Xcg/d = 0.17). (e> Model E (Xcg/d = 0.23). 

Figure 1.- Continued. 
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.250 d 

.I25 d 
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,490 d - .6 157-4 

shown 

shown 

(f) Model F (Xcg/d = 0.24). 

Figure 1. - Concluded. 
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Figure 2.- The relationship between nose bluntness and cone half-angle for 
models having CD = 1.0 and C = 0. 
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Figure 3 

(a) Zero l i f t  constant  drag bodies. 

.- Photographs of models and t y p i c a l  



(b) High drag bodies. 

Figure 3 . -  Continued. 

A-42007 



A-36132 

(c) Model A and sabot.  

Figure 3.- Continued. 



(d) Model F and 10' canted sabot.  

Figure 3 . -  Concluded. 
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(a) Model B. 

Figure 4.- Typical pitching and yawing motions produced by the model. 
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(b) Model D. 

Figure 4.- Concluded. 
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A B C 

Theory Model 8, rn/rb X,,/d Re MOJ 

0 A 44.1° 0.33 0.32 0.32X106 10.8 
0 -- B 40.8O .67 .28 .32XtO6 10.8 

C 27.0° .95 .27 .32X106 I I .  I 0 --- 

I I I I I I I I 
2 4 6 8 IO 12 14 16 

arms 9 deg 

Figure 5.- Variat ion of drag coe f f i c i en t  with angle of a t t ack  f o r  models A, B, and C. 
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Figure 6.- Variation of the drag coefficient of spherically blunted cones as 
a function of cone half-angle and nose bluntness. 
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Model 8, r,/rb X,,/d Re MID 

O A  44.1" 0.33 0.32 0.32XIO6 10.8 
O B  4 0.8O .67 .28 .32X106 10.8 o c  27.0" .95 .27 .32X106 1 1 .  I 

0 

- -  

-I 1 

I -  

I A O  I A I  I 

Newtonian 

C 
qo I* 

I I I I I 

I 

c 
0 
-0 
.- 
e 
$ 0  
0 
" 
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J 
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- I  

I I I I 

A 

I 

I I I I I 

Figure 7.- Variation of the lift-curve slope with pitch amplitude for 

models A, B, and C. 
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Mod e I 9, rn/rb X,, /d Re M a  
A 44.1" 0.33 0.32 O.32X1O6 10.8 
B 40.8' .67 .28 .32XIO6 10.8 
C 27.0' .95 .27 .32X106 I I. I 

-- 
--- 
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\ 

\ \ 
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I I I I I 
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a, deg 

Figure 8.- Var ia t ion  of  l i f t  c o e f f i c i e n t  with angle  of a t t a c k  f o r  models 
A, B, and C. 
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Figure 9.- V a r i a  i on  

A B C 

Model 8, rn/rb X,,/d Re M a  
A 44. I O 0.33 0.32 (Exp) 0.32X1O6 10.8 
A 44.1° .33 .28(Calc) .32X106 10.8 
B 40.8O .67 .27(Exp) .32X106 10.8 
C 27.0° .95 .28(Exp) .32X1O6 1 1 . 1  

a 

0 
0 

I 
4 

am 

0 0  

a 

0 
0 0  0 

coo 

I I I I 
8 12 16 20 

am1 deg 

f t h e  s t a t i c  s t a b i l i t y  with p i t ch ing  amplitude 

f o r  models A, B, and C. 
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Model 8, rJrb X,,/d Re Mal 
A 44.1" 0.33 0.32 0.32X1O6 10.8 

-- B 40.8O .67 .28 .32X106 10.8 
--- C 27. Oo .95 .27 .32X106 I I. I 
---- A 44. I "  .33 .28 .32X1O6 10.8 

Maximum a, x 

/ 

4 8 12 16 20 
a, deg 

Figure 10.- Variation of the pitching-moment coefficient with angle of attack 
for models A, B, and C. 
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Model 0, rn/rb X,,/d Re M, Newtonian 

A 44.1" 0.33 0.32 0.32X106 
B 40.8O 
C 27 .Oo .95 .27 .32X1O6 I I. I 

.67 .28 .32X106 10.8 ---- 
A 

-- 
--- 

-4 r 

W 
0 

X 

n 
0 

X 

-------- -- -- -- -- 
l o  

01 I I i I I I 

I I I I I I I 
0 2 4 6 8 IO 12 

a, deg 

Figure 11.- Var ia t ion  of  t h e  s t a t i c  margin with angle  of  a t t a c k ,  r e fe r r ed  
t o  t h e  homogeneous cen te r  of g rav i ty ,  f o r  models A, B, and C. 
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l o r  

Model 8, r,.,/rb x,,/d Re M a  
O A  4 4 . 1 O  0.33 0.32 0.32XlO' 10.8 
O B  40.8O .67 .28 .32XIO6 10.8 
o c  27.0° .95 .27 .32X106 I I .  I 

I I I I 
I 

0' 0 0 0  '0  0 I 0 0  I <  
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I I I I I 
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0 00 

Figure 12.- Variation of the damping parameter ( E )  with pitch amplitude for 
models A, B, and C. 
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Figure 14.- Variation of the drag coefficient with angle of attack for 
models D and E. 
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Figure 15.- Variation of the lift-curve slope ( C L ~ )  with pitch amplitude for models D and E. 
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Figure 18.- Variation of the pitching-moment coefficient with angle of 
attack for models D and E. 
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Figure 19.- Variation of  the center of pressure with angle of attack for 
models D and E.  
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Figure 20.- Variation of the  s t a t i c  margin with angle of  a t t ack ,  re fer red  t o  the  homogeneous center  of 
grav i ty ,  f o r  models D and E. 
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Figure 21.- Variation of the damping parameter ( E )  with pitch amplitude 
for models D and E. 
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Figure 22.- Variation of the dynamic stability (Cmq + Ca) with .pitch 

amplitude for models D and E. 
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Figure 23.- Effect  of afterbody shape on the  drag coe f f i c i en t  of a 55' half-angle blunt cone; 
models D and F. 
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models D and F. 
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